Tag Archive for: renewable

It’s Alive! Passive House Must Breathe.

In the next few posts, we are going to break down some of the key elements of Passive House Design. Today we examine the part of the mechanical system—proper ventilation and energy recovery.

Passive House Design Process

 

No One Likes Stale Air.

Passive buildings are designed to be air tight. Really air tight. But we want clean air to breathe, and keep our home feeling fresh. So how do we efficiently bring it in? In the northeast, the outside air is too hot and humid in the summer, and far too cold in the winter. This predicament traditionally necessitates the use of furnaces and air conditioners—the darlings of your utility bill.

Passive Building Design takes a more clever approach.

[box] Summer = hot air outside/cool air inside

⇒ use outgoing stale air to cool down incoming fresh air

Winter = cold air outside/warm air inside

⇒ use outgoing stale air to warm up incoming fresh air[/box]

And never the twain shall meet. Incoming and outgoing air streams are kept completely separate from each other, so stale air doesn’t end up back in your environment.

 

What Sorcery is This?

Let me introduce the star of the show—  ERV, or for those not into architecture acronyms Energy Recovery Ventilator. This is the preferred system here in the northeast US, due to our high humidity and wide temperature range. The beauty of an ERV is that is can harvest heat in the winter and reduce heat in the summer, while effectively manage humidity. The humidity component increases the energy harvesting efficiency of ERV and creates a more comfortable living environment.

 

ERV_graphic, passive house ventilation

Schematic of an Energy Recover Ventilator (ERV) for Passive Buildings.

In the summertime (cooling season), the system conditions incoming warm, humid air by passing it over coils or channels containing stale, cool air being exhausted from the house. Desiccants are used to remove humidity from the fresh air intake, which adds to the cooling effect. In the winter, the system uses warm, stale air being exhausted from the house to pre-heat the incoming fresh air. Humidity can be added to incoming air in order to maintain a comfortable level, preventing humans from drying out!

mechanical_ventilation, passive house

Mechanical ventilation diagram for Passive House Design.

Typical ventilation systems are set up to extract stale air from the “wet” areas of the house—kitchens, bathrooms and storage rooms—through the use of ventilation ducts that channel air though the ERV and exhaust it outside. Incoming air is ducted from the outside of the building, into the ERV, and then into bedrooms, living rooms and dining rooms. Inline filters can be added to the incoming air stream to remove pollen and other particulates.

For typical homes, only a single ERV  and blower are required and they reside inside the house for a low maintenance operation.  Heat exchange efficiency can range from 50 to 90%, depending on the type of system and manufacturer. It is generally accepted that ERV can cut energy usage by 50%.

High-efficiency ERV systems ensure optimal indoor air quality and comfortable living for energy-efficient and passive building construction. The whole house ventilation system really is like the heart and lungs of a passive building.

[box type=”bio”] Eric Davenport, LEAP’s founder is Passive House Certified, and understands the ins and outs of these systems. If you are considering a new build, or even a retrofit, leverage our expertise to get the most out of your project.[/box]

 

 

2030 Challenge: Carbon-Neutral Buildings

Architecture 2030 issued The 2030 Challenge asking the global architecture and building community to implement carbon-neutral design by 2030. LEAP Architecture accepts this challenge!

All new buildings, developments, and major renovations shall be carbon-neutral by 2030

Buildings are the major source of global demand for energy and materials that produce by-product greenhouse gases (GHG). Carbon-neutral, also called carbon neutrality is a term used to describe the action of organizations, businesses and individuals taking action to remove as much carbon dioxide from the atmosphere as each put in to it. The overall goal of carbon neutrality is to achieve a zero carbon footprint.

Slowing the growth rate of GHG emissions and then reversing it is the key to addressing climate change and keeping global average temperature below 2°C above pre-industrial levels.

To accomplish this, Architecture 2030 issued The 2030 Challenge asking the global architecture and building community to adopt the following targets:

 

Graphic showing the move toward carbon-neutral by reducing greenhouse gas emissions over time

  • All new buildings, developments and major renovations shall be designed to meet a fossil fuel, GHG-emitting, energy consumption performance standard of 70% below the regional (or country) average/median for that building type.
  • At a minimum, an equal amount of existing building area shall be renovated annually to meet a fossil fuel, GHG-emitting, energy consumption performance standard of 70% of the regional (or country) average/median for that building type.
  • The fossil fuel reduction standard for all new buildings and major renovations shall be increased to:
    • 80% in 2020
    • 90% in 2025
    • Carbon-neutral in 2030 (using no fossil fuel GHG emitting energy to operate).

 

These targets may be accomplished by implementing innovative sustainable design strategies, generating on-site renewable power and/or purchasing (20% maximum) renewable energy.

Graphic showing design strategy + technologies + off-site renewable energy will lead to carbon-neutral building

The Impact of the 2030 Challenge

The 2030 Challenge has been adopted and is being implemented by 80% of the top 10 and 70% of the top 20 architecture/engineering/planning firms in the U.S. In addition, the AIA, ASHRAE, the U.S. Conference of Mayors, the federal government, and many other organizations and state and local governments and agencies have adopted the Challenge. In Canada, the Royal Architectural Institute of Canada, the Ontario Association of Architects and cities such as Vancouver have also adopted the Challenge targets.

Since 2006, the landscape for low-carbon building has been transformed, and building with sustainability and high performance in mind has become the standard approach. Zero Net Energy (ZNE) buildings have gone from being prototypes and experiments to being widely built and, in the case of California, being the standard that will be adopted for new residential buildings in 2020 and commercial buildings in 2030. Of course, this entire shift is not only due to the 2030 Challenge, but it has been key in helping focus the industry’s attention on the problem, and suggested a path to solving it.

 

For more information, visit: www.architecture2030.org