Sustainable Building Goals Made Simple

So you’re interested in going green, being environmentally responsible, and feeling pretty damn good about it—until the influx of terms and programs rush in—LEED, Energy Star, Passive House, Carbon Neutral. What’s right for me? That’s why we’re going to take you through our Sustainable Building Goals Made Simple.

 

Sustainability Building Goals Don’t Have to be Overwhelming

This can be a complex terrain to navigate, but this is one of the first topics that LEAP tackles and it informs the rest of the design process going forward. We divide sustainability goals into 3 sections of a pyramid—conservation, Net-Zero, and Living Building. A pyramid shape is a perfect representation of starting with a wide base of basic green building practices and becoming more refined as you go up.

Below is a graphical representation of our pyramid, with each of the 3 layers explained in the following text.

Sustainable Building Goals Made Simple

Sustainable Building Goals Made Simple


Conservation and Sustainable Architecture

Sustainable architecture is a pretty broad term, which basically seeks to minimize the negative environmental impact of buildings through conscious design, energy efficiency, choice of materials, development space and the ecosystem at large. Sustainable architecture has an eye towards energy and ecological conservation in the design of the built environment. The idea of sustainability is to think ahead to ensure that building are constructed for longevity and effectiveness.  Read more about LEAP’s commitment to sustainability.

Energy Star

Energy Star is a government-backed labeling program that helps people and organizations save money and reduce greenhouse gas emissions by identifying factories, office equipment, home appliances and electronics that have superior energy efficiency

LEED (Leadership in Energy & Environmental Design)

LEED is one of the most popular green building certification programs used worldwide. Developed by the non-profit U.S. Green Building Council (USGBC) it includes a set of rating systems for the design, construction, operation, and maintenance of green buildings, homes, and neighborhoods that aims to help building owners and operators be environmentally responsible and use resources efficiently.

Buildings can qualify for four levels of LEED certification:

  • Certified: 40–49 points
  • Silver: 50–59 points
  • Gold: 60–79 points
  • Platinum: 80 points and above

Green Globes

Green Globes is an online green building rating and certification tool that is used primarily in Canada and the US. Their standard is recognized by the Global Sustainable Tourism Council and Green Globe is an Affiliate Member of the UNWTO. Green Globe members are committed to benchmarking and managing the use of energy and water with the aim of reducing the use of these resources as well as promoting reuse and recycling of materials.


Net Zero Building

A  zero net energy (ZNE) building is a structure with zero net energy consumption. This means the total amount of energy used by the building on an annual basis is roughly equal to the amount of renewable energy created on the site. In some definitions, the energy balance can be from renewable energy sources elsewhere. These buildings consequently contribute less overall greenhouse gas to the atmosphere than similar non-ZNE buildings. They do at times consume non-renewable energy and produce greenhouse gases, but at other times reduce energy consumption and greenhouse gas production elsewhere by the same amount.

Carbon Neutral Buildings

Carbon-neutral, also called carbon neutrality is a term used to describe the action of organizations, businesses and individuals taking action to remove as much carbon dioxide from the atmosphere as each put in to it. It is similar to net zero building. The overall goal of carbon neutrality is to achieve a zero carbon footprint, which means using no fossil fuel GHG emitting energy to operate.

Read more in our story of meeting the 2030 CHALLENGE: CARBON-NEUTRAL BUILDINGS

Passive House Building

The term passive house refers to a rigorous, voluntary standard for energy efficiency in a building, reducing its ecological footprint. It results in ultra-low energy buildings that require little energy for space heating or cooling. The requirements for a certified Passive House are very stringent. Per the definition—it can use no more than 1.4 kWh per 1 ft² of living space annually.

Read more on our series of Passive House Design Posts.


Living Buildings

A Living Building operates as a structure that “generates all of its own energy with renewable nontoxic resources, captures and treats all of its water, and operates efficiently and for maximum beauty.

The Living Building Challenge™ is a building certification program, advocacy tool and philosophy that defines the most advanced measure of sustainability in the built environment possible today and acts to rapidly diminish the gap between current limits and the end-game positive solutions we seek.

[box type=”bio”] Interested in Sustainable Building, Net Zero, & Passive House Design? Whether you want to start from scratch or renovate—we can help with Sustainable Building Goals Made Simple! Every $1 spent on design saves $10 in construction costs. Let LEAP provide you the best design possible.

Contact us to get started.[/box]

Passive House Design: Air Sealing & Pink Slime

This is the fourth post in our series on Passive House Design. If you missed either of the previous, click on the links below to get up to speed! LEAP’s intelligent design process consists of four main steps. Today we explore the importance of air sealing, and pink slime—that’s a technical term.

 

Passive House Design Process

  1. Site Analysis
  2. Doors and Windows
  3. Insulation
  4. Air Sealing

“Your Love is Lifting Me Higher”

We want you to have a love affair with your house or office building (or why not both?). It should be an uplifting space that makes you want to sing and dance. And hopefully it’s just you dancing—because your building is (or should be)—coated with pink slime. Not the psychomagnotheric slime that had lady liberty strolling around, cracking domes like soft boiled eggs, but the air sealing kind.

Air sealing is critical to temperature and moisture control, and reduces draftiness, noise and pollutants. It also plays an important role in energy efficiency. Proper sealing of joints and penetrations in the building envelope can reduce energy consumption for heating and cooling by 30%.

passive house design, air sealing, spray on seal

Here is an example from Ghostbusters II, where they went a little overboard with air sealing the building.

 

The Ghosts of Air Sealing

The wind whistling past your building at night can do more than just make eerie noises. It can actually create a negative pressure zone, which tries to suck air out from the inside. Here is a list of critical locations where air tries to get out (or in—refer to image at the top):

  • Around doors and windows
  • Around electrical fixtures
  • Basement band joist and exterior penetrations
  • Wiring/plumbing/duct penetrations
  • Vertical meets horizontal planes: (roof to wall, floor to wall, wall to wall)

Air Barriers are materials that stop moisture-laden air from entering building assemblies, reduce air leakage and, wind-driven air from entering into and through insulation. Examples of air barriers:

  • Interior drywall, fully sealed for continuity and air tightness.
  • Exterior sheathing: plywood, OSB*, fully sealed for continuity and air tightness. (*needs coating)

How do you ensure that these sheathings are fully sealed? Pink slime to the rescue! Certain spray foams and caulks are applied to the framing members to effectively seal the locations mentioned above. One of the products we like is by Owens Corning. They make a spray foam with flexible seal technology (and yes, it is pink). Not all spray foams can be used for air sealing. Some do not adhere well to the frame, and some are too rigid, which means they can crack and create gaps as the structure settles.

So, with yet another set of important design considerations to manage…

 

Who Ya Gonna Call?   LEAP ARCHITECTURE!

We ain’t afraid of no gaps!

LEAP works with energy star certified framers and contractors, who know how to seal and frame correctly, saving you from any number of scary scenarios down the road. Proper air sealing is that much harder if the framing member aren’t in correct place, which is why LEAP specifies a detailed instructions for framing and construction. One of our the most notable directives: ROCK the CEILING FIRST!

LEAP specifies that the ceiling be sheet-rocked before the wall framing goes up. This allows the space behind the walls to basically be capped by the ceiling, instead of creating an ‘air corridor’ directly up to the attic and below to the basement. The energy benefits gained using this method totally outweigh any inconvenience for builders.

passive house design, blower-test

Kit to conduct Blower Test to measure air sealing. (looks suspiciously like an ecto-containment unit)

So how do you know that you have achieve effective containment? Well, blower door testing is a diagnostic tool designed to measure the air tightness of buildings. It uses a calibrated fan capable of measuring airflow, mounted in a flexible panel positioned in an external door. A pressure-sensing device measures the air pressure created by the fan. The fan both pressurizes and depressurizes the home. By recording both flow and pressure in each direction, the system is able to provide highly detailed information about building air tightness.

There are two main ways that blower-door tests are reported: airflow at a pressure difference of 50 Pascals (cfm50) or air changes per hour at a pressure difference of 50 Pascals (ACH50). The first number — cfm50 — can be read directly off the airflow manometer at the time of the test. The second number — ACH50 — can only be calculated once the building’s volume has been determined. To calculate ACH50, multiply cfm50 by 60 minutes per hour and divide the product by the building volume, including the basement, measured in cubic feet.(1)

Passive House Design requires an ACH50 of 0.6, which is pretty rigorous to achieve. Aside from Passive House, standard New York State requirements for building tightness are likely to be upgraded by October 2016, where all constructions must meet and ACH50 of 3. This means 3 air changes or less per hour, which will require installation of a whole house ventilation system per ASHRAE standards.

passive house design, air sealing

Air Change per hour at 50 pascals (ACH50) as it relates to Passive House Design and mechanical ventilation requirements.

[box type=”bio”] Contact LEAP to design an air-tight building worthy of an ecto containment unit and watch as we fire up our foam insulation spray guns (we won’t cross the streams!).[/box]

Passive House Design: Insulation–That’s a Wrap

This is the third post in our series on Passive House Design. If you missed either of the previous, click on the links below to get up to speed! LEAP’s intelligent design process consists of four main steps, each building on the previous. Site analysis is the first step, because it informs all the other steps. You can have all of the best windows, doors, and insulation, but their effectiveness is diminished if the orientation of the structure isn’t correct.

Passive House Design Process

Today we explore the importance of insulation, and avoidance of thermal bridging.

  1. Site Analysis
  2. Doors and Windows
  3. Insulation
  4. Air Sealing

Insulation to Minimize Heat Loss

A typical modern house loses and gains approximately 150 kWh/m²a of heat, where the units refer to energy per floor area. A “leaky house” will have double those losses — think older windows, no wall insulation, and degraded door seals. On the other hand, a passive house will be 20x more efficient compared to the leaky house, and 10x more than a typical modern house. A big part of how Passive House Design minimizes thermal gains and losses is through super insulation.

passive house insulation, passive house design

Comparison of heat gains and losses for different house types.

Passive House Standards

Per the definition of Passive House—it can use no more than 1.4 kWh per 1 ft² of living space annually. For example, a 2,000 ft² house would only use 2,800 kWh per year, which comes out to $280/yr (@ 10 cents/kWh). To achieve this efficiency, we’ve discussed how the structure’s envelop must be air-tight, but we also need to insulate the heck out of it.

The insulation itself is generally comprised of multiple layers, all with high R-values. This insulation covers the entire envelope of the structure, including under the footing,with the only exception being the windows and doors. To be continuous, the insulation goes on the outside of the framing, opposed to between studs in a conventional building. The outermost layer of the insulation-sandwich is a water/wind membrane, which tends to be UV sensitive. This necessitates installing siding to cover and protect the membrane.

This configuration significantly reduces the heat transfer through the walls, roof and floor compared to conventional buildings. A wide range of thermal insulation materials can be combined to provide the required high R-values. Special attention is also given to eliminating thermal bridges.

A thermal bridge is a break in the insulation surrounding the house. In a traditional home, this would include all framing members of the structure, and things like porches and overhangs. Thermal bridges lead to massive heat loss, negating the benefit of “over insulating” the structure.

passive house insulation, passive house design

Example of a possible combination of insulation layers for a Passive House Design.

 

 Much Ado About Porches, Decks, and Overhangs

We don’t pay special attention to these “add-ons” for nothing. There are lurking thermal bridges…ready to let all the heat in (or out) of our carefully crafted structure. So instead of penalizing Passive House structures and sending them to the corner with no porches or decks, we work around it. Normally a ledger board would be affixed to the structure as a supporting member for the deck or porch. Instead, we design it to stand-off, and put all of our support posts in the ground. In this manner, we avoid creating a break in the continuous insulation wrap.

So to wrap up, (pun intended), think of super insulation for a passive house like Ralphie’s brother in a Christmas Story. He is bundled to the max, layer upon layer of winter clothes, along with socks, boots, gloves, and his hood pulled so tight that he can barely see—and all on the outside of his “frame”. I guess Randy and Ralphies’ mother understood the dangers of heat loss and thermal bridging back in the 50’s. That lady was well ahead of her time.

[box type=”bio”] Interested in Passive House or Green Building Design? Whether you want to start from scratch or renovate—we can help! Every $1 spent on design saves $10 in construction costs. Don’t shoot your eye out. Let us provide you the best design possible. Contact us to get started.[/box]

Passive House Design: Windows— A Dark Age Salvation

We are continuing our series on Passive House Design. LEAP’s intelligent design process consists of four main steps, each with the aim to maximize human comfort, energy efficiency, and real cost savings. Today we explore the importance of good windows and doors, along with what constitutes them as such.

Passive House Design Process

  1. Site Analysis
  2. Doors and Windows
  3. Insulation
  4. Air Sealing

We Aren’t Living in the Dark Ages, or Are We?

So you took a perfectly good, well insulated structure and put holes in it. Oops, I mean windows. You put windows in. But that’s one of the reasons we crawled out of caves and stopped living like mole-people. Our homes and offices are more pleasant with natural light and vitamin D.

Let’s look at an example somewhere between mole-people era and modern times—the reign of castles. I think we can agree that castles were not the pinnacle of energy efficiency. To support this claim, Eric “Outlander” Castle_R-value, passive house designDavenport, traveled back in time to report the effective R-values of castles as 4… Well, in comparison, the effective R-value of a passive house is 42. (Well really it’s 40, but we all know the answer to life, universe and everything is 42).

 

So what the heck is this effective R-value you speak of?

R-value stands for resistance to heat flow. The higher the R-value, the greater the insulating value.

Effective R-values are the TOTAL resistances provided by all components in a wall assembly. This equates to patience and higher math—tallying up the  thermal bridging, air infiltration, radiant heat loss or gain, and moisture impact on the overall structure. These factors usually reduce the effectiveness of the labeled R-value, on say conventional cavity-filled insulation.

Poor window quality can totally tank your whole effective R-value. You can construct your walls from the most insulating material in the world, but if you’re then installing crap windows, you might as well tack an oil cloth over the opening and call it good.

Which brings us to the puffy sleeves of the 1980’s. Building designers deemed “Windows for all” & “Architecture is above human whims!”, as a backlash to the 1970’s energy crisis and inoperable windows. This equated to: we can put windows everywhere, (even on the—gasp—west side of the building) and a window, is a window, is a window. We shall install the same windows in New York, California, and Alaska—climate dependence be dammed!

Well, to give you an idea of how well that worked out—the one design fits all approach—the effective R-value of these buildings dropped back to 4. Yes, 4. Your new, beautiful, big-hair building is the energy equivalent of living in a drafty castle. Back to the dark ages. (Weren’t puffy sleeves popular in the middle ages too? Coincidence?)

So we continue to claw our way out of the dark days of the 80’s, towards the light of Passive House Design. Good windows (and doors) equals a good thermal envelope, which equals a high effective R-value (42!), which spreads comfort and energy efficiency across the land.

 

What Constitutes a High Efficiency Window?

Soft, but what light through yonder window breaks? It faces east, and  2″ is the notch. Or rather, placement and construction—a high efficiency window doth make. And who pray tell constructs the finest windows in the land? Well, the Europeans do. Perhaps it was those long, drafty years of castle living that haunt their collective consciousness. But at any rate, they have figured out how to build a great window.  And the big secret? A deep notch.

A deep notch accomplishes two things: makes the structure stronger, and reduces thermal bridging. The wood/glass interface is the weakest part of the window, and also where most of the energy is lost. European windows have a 2″ notch, whereas most American made windows are only 1/2″. This extra 1.5″ seats the glass securely in the frame and significantly reduces air leakage.

The Passive House Institute has a database of Passive House Certified windows and doors (and no, they don’t have to be European). When manufacturers from anywhere meet Passive House specifications, they can become certified. Below is an example of what a Passive House Institute certification seal looks like. Notice the list of 7 different climate regions.

phius-window-certification-for-the-us

Types of Windows

The type of window is also important. Double hung are out. Casement, awning, and fixed windows are in. Tilt-turn windows are a good option for functionality and air sealing, see image below. The three positions (fixed, tilt, turn) allow for security, venting and ease of cleaning, respectively.

Placement is another key factor. For balanced daylighting, large and floor to ceiling windows are typically placed on south and east facing walls. Small windows are placed high up on the north facing wall. As a rule of thumb, window area is no more than 10% of the total floor area for a given room. This helps prevent overheating in the summer and losing heat in the winter.

3-Tilt-Turn-Windows-passive house design

Tilt Turn Windows are a good choice for Passive House Design. Image from Glo Windows.

 

We didn’t really touch much on doors, but the same principles apply: good sturdy frames and good sealing will be more energy efficient. Bad doors are like installing a portcullis? It’ll keep the critters out, but not much else. The payback for spending a little more money upfront on good doors and windows is well worth it. Want to know how much? Contact LEAP Architecture today, and we can fill you in!

 

 

Passive House Design: Live like Goldilocks, Minus the Bears

Designing by trial and error can be exhausting. Take it from Goldilocks. She was so tired after all the rigmarole of finding “just right”, she actually fell asleep in a bear’s house. LEAP Architecture takes the guess-work out of Passive House Design with our (Bear-Proof) Design Process. Our intelligent site design consists of four main steps, each with the aim to maximize human comfort, energy efficiency, and real cost savings.

Passive House Design Process

  1. Site Analysis
  2. Doors and Windows
  3. Insulation
  4. Air Sealing

This week, we focus on the in’s and out’s of site analysis. We circumvent all the wandering through the woods, sleeping on hard beds, and eating loads of porridge. We nail just-right the first time around. Did we mention it also provides a great payback?

 

Proper Planning Prevents Piss Poor Performance

That old military adage couldn’t be more appropriate here. Maybe we’ll make it the company tagline. But seriously, upfront site planning for your building makes so much sense. And, it doesn’t cost anything extra! The builders don’t care if your front door faces north or south, but when the arctic air blows in, you will.  It pays to orient the building to capture more sun-heat in the winter and stay cool in the summer. Here’s how we figure it out.

Passive house design, site planning, intelligent site design

The Down and Dirty of Passive House Design

We measure, map out and consider all of the following:

  • Sun paths—Measure and diagram the arc throughout the year, location of shadows
  • Wind patterns—Measure and map the micro and macro climates
  • Vegetation— Survey what, where, tall/short, do they break wind? (hehe, break wind)
  • Topography—Hills? Valleys? (Caves of hibernating bears?)
  • Roads—The approach. You would like to access your building, wouldn’t you?
  • Views—Gaze on lavender fields doing dishes (move to France, but you get the idea)
  • Notoriety or Privacy?—To be seen or not to be seen, that is one of many questions.
  • Acoustics— Want to hear the babbling brook, but not the highway?

We combine your personal preferences with the climate data to optimize the placement of your structure.

Geometry: Be There or Be Square—if You’re a House

square footprint, cube house, passive house design

Building geometry is defined by how large your structure is going to be, or it’s volume. Smaller structures, like houses, are more efficient with a square footprint and minimum surface area. If you are not a house, be rectangular. High surface area buildings are much better for offices and larger structures.

To help understand surface area, picture a cube vs. a long rectangle. They can both have the same volume, but the cube is more compact, where the rectangle is long and skinny. The actual surface exposed to the outside environment for the cube is smaller, requiring fewer square feet of insulation.  Smaller structures tend to be externally loaded, which means the outside environment has the largest influence on its energy efficiency. Minimizing the area for that interaction to take place helps to dampen the effects.

A higher surface area to volume ratio is desirable for larger structures, as they tend to be internally loaded—meaning inside activities have the greatest influence on the inside environment. Picture a skyscraper—the sheer number of people occupying the building, machinery running and other inside activities have a much greater impact than the outside environment. A rectangular structure is preferred (vertical or horizontal), not only for the higher surface area, but to also help maximize natural light penetration into the space. Ample natural lighting can significantly reduce electricity usage.

Quick Summary of Building Geometry:

Smaller structures:

  • Maximize building volume; minimize surface area
  • Square floor plan preferred
  • Tend to be externally loaded structures- outside activity effect environment

Larger structures:

  • Higher surface area than volume is desired
  • Rectangular floor plan is optimal
  • Better for natural light penetration
  • Internally loaded structure -inside activity effects environment

Orientation – Get your Walls on Straight

modern_square_house, passive house design

All that previous work of mapping the sun and wind and rain and…well, that gets put to work. Houses for example, will predominately have windows and doors located on south and east facing walls. This helps reduce blasts of arctic wind infiltrating your domicile, as cold wind tends to blow from the north in the north east. Eric Davenport, our very own Avatar, also considers things like banking wind currents off hills to create more ventilation in your house. If this isn’t some air-bender shit, I don’t know what is.

For larger structures, orienting the short end of the rectangle to face west will prevent that terrible afternoon glare on your computer screen and eyeballs. Maybe you’ve experienced this unfortunate office situation, or another.  When the long side of the building faces west —the afternoon sun heats 1/2 of the building, jacking that side up to 90 deg—and those people get hot. People on the dark side freeze because the air conditioning kicked on and now their space is 50 deg. Intelligent site design gets the temperature in your office building just right, keeping the bears happy and solving all your HR issues. Well, at least the fight over the thermostat.

[box type=”bio”] LEAP Architecture Makes Environments JUST RIGHT!

Contact us today for a Passive Building Consultation.[/box]

It’s Alive! Passive House Must Breathe.

In the next few posts, we are going to break down some of the key elements of Passive House Design. Today we examine the part of the mechanical system—proper ventilation and energy recovery.

Passive House Design Process

 

No One Likes Stale Air.

Passive buildings are designed to be air tight. Really air tight. But we want clean air to breathe, and keep our home feeling fresh. So how do we efficiently bring it in? In the northeast, the outside air is too hot and humid in the summer, and far too cold in the winter. This predicament traditionally necessitates the use of furnaces and air conditioners—the darlings of your utility bill.

Passive Building Design takes a more clever approach.

[box] Summer = hot air outside/cool air inside

⇒ use outgoing stale air to cool down incoming fresh air

Winter = cold air outside/warm air inside

⇒ use outgoing stale air to warm up incoming fresh air[/box]

And never the twain shall meet. Incoming and outgoing air streams are kept completely separate from each other, so stale air doesn’t end up back in your environment.

 

What Sorcery is This?

Let me introduce the star of the show—  ERV, or for those not into architecture acronyms Energy Recovery Ventilator. This is the preferred system here in the northeast US, due to our high humidity and wide temperature range. The beauty of an ERV is that is can harvest heat in the winter and reduce heat in the summer, while effectively manage humidity. The humidity component increases the energy harvesting efficiency of ERV and creates a more comfortable living environment.

 

ERV_graphic, passive house ventilation

Schematic of an Energy Recover Ventilator (ERV) for Passive Buildings.

In the summertime (cooling season), the system conditions incoming warm, humid air by passing it over coils or channels containing stale, cool air being exhausted from the house. Desiccants are used to remove humidity from the fresh air intake, which adds to the cooling effect. In the winter, the system uses warm, stale air being exhausted from the house to pre-heat the incoming fresh air. Humidity can be added to incoming air in order to maintain a comfortable level, preventing humans from drying out!

mechanical_ventilation, passive house

Mechanical ventilation diagram for Passive House Design.

Typical ventilation systems are set up to extract stale air from the “wet” areas of the house—kitchens, bathrooms and storage rooms—through the use of ventilation ducts that channel air though the ERV and exhaust it outside. Incoming air is ducted from the outside of the building, into the ERV, and then into bedrooms, living rooms and dining rooms. Inline filters can be added to the incoming air stream to remove pollen and other particulates.

For typical homes, only a single ERV  and blower are required and they reside inside the house for a low maintenance operation.  Heat exchange efficiency can range from 50 to 90%, depending on the type of system and manufacturer. It is generally accepted that ERV can cut energy usage by 50%.

High-efficiency ERV systems ensure optimal indoor air quality and comfortable living for energy-efficient and passive building construction. The whole house ventilation system really is like the heart and lungs of a passive building.

[box type=”bio”] Eric Davenport, LEAP’s founder is Passive House Certified, and understands the ins and outs of these systems. If you are considering a new build, or even a retrofit, leverage our expertise to get the most out of your project.[/box]

 

 

Passive House: Heat Your House by Watching TV

Passive House Design is a little bit like Vegas. Well, the slogan at least. Passive houses or buildings, are designed with an extremely air-tight-envelope. Nothing gets in or out without being allowed to. This makes it possible to harness the energy of seemingly small actions to eliminate your heating bills.

 

What Happens in Passive House, Stays in…

Imagine going about your normal, day-to-day activities, —watching TV, using your computer, and turning on the stove and all that energy is captured for use.

Microwaving your lunch at the office? Same deal. New office buildings can seriously benefit from passive house design. And did we mention body heat? The warmth you generate also contributes.  It’s pretty amazing to think that those small actions provide all the energy required to heat a building. That’s one of the beautiful things about passive house.

It takes an extremely high level of architectural design to achieve a Passive Building. That’s why Passive House Certification is one of the most rigorous for architects. And guess what? LEAP’s very own Eric Davenport is Passive House Certified.

According to Eric, the qualifications and tests for his Passive House Certification were harder than his architecture exams, but totally worth it. “Sustainability and net-zero building is such a passion of mine, I wanted to offer this as a core service to my clients”.

 

Commercial and Residential Passive Buildings

Passive Building Design is applicable to both commercial and residential buildings. This is exciting because it means everything from skyscrapers to single family homes can be designed for sustainability. This includes office buildings and multi-family units. In all cases, passive building design is comprised of three main features:

  1. Proper Insulation
  2. Zero Air Leakages
  3. Zero Thermal Bridges

Particular consideration is also made for using triple pane windows, proper orientation to the sun, and heat recovery ventilation. What does this really mean? It means designing your building to work for you. Set it and forget it.  Yes, you will spend a little more on high quality insulation, windows, and a heat exchanger, but it will literally insulate you from fluctuating oil and gas prices.

[box] Interested in reading more on Passive House and Building Design? We have a great article written by Eric Davenport, along with a “Passive House Explained in 90 Seconds” video. Check them out here. [/box]

LEAP is part of the Passive House Alliance. For more information about making Passive House Building mainstream, check out PHIUSphius-large

LEAP Envisions Albany Art Room 2.0 – Commercial Redesign

From the outside, one of the most striking features of the Albany Art Room is their bright pink and blue sign. Just looking at it started the creative juices flowing, but the real excitement starts when you enter the space. Read how LEAP helps make the transition from residential to commercial more efficient. 

 

Commercial Space for Art

The Art Room is located in a converted 3 story house on New Scotland Ave in Albany, NY. Karen Schupack started the Albany Art Room to open up the visual arts to a wider community. AAR offers classes in various artistic mediums, along with drop-in open studio and private studio space. The first embodiment of AAR was in a storefront space next to El Loco on Madison Ave in Albany, right around the corner from Lark St.

Two years ago, Karen relocated AAR to offer up more space for the growing demand of her customers, both for studio rentals and open studio. (Did we mention it’s also much easier to find parking?) The new space also offers Karen the opportunity to customize her space and build more efficiency into her operation.

So how do you augment a structure, originally designed to function as a house, into a thriving center for business? (Hint: work with an architect). Karen connected with LEAP Architecture a few months ago and took the first concrete steps to envision a commercial redesign for her space.

Karen’s objectives were straightforward: utilize more space for revenue generating activities, and reorganize overall space for maximum productivity.

Doubling Retail Creative Space

LEAP understands that having the right information is key to making strategic business decisions. After meeting with Karen and touring of the space, LEAP put together a detailed layout of the building, which highlighted currently used space. Eric Davenport, (the project lead) was able to quickly identify underutilized areas that could be transformed into new studio spaces and additional classrooms.

The schematic below highlights the current space on the left (in red) and underutilized space on the right, (in orange). In short, LEAP identified additional studio space, which could double the current operation — within the exiting footprint. Expanding classrooms and studios would mean the ability to serve more customers and generate additional revenue.

There is of course, an investment for fitting up the new space. Which brings us back to the need for information.

LEAP-Sample-Construction-Budget-ROI-commercial redesign

Commercial redesign schematic for the Albany Art Room. LEAP identified additional revenue generating space inside the exiting footprint, which could double the current studio space.

 

Commercial Redesign – Does it Make $ense?

As business owners ourselves, we understand the question – Is it worth it? That’s where LEAP’s analysis of construction dollars comes into play. Our architects allocate money to the most appropriate categories, for the best investment and rate of return.

A LEAP architect put together a detailed cost benefit analysis (CBA) for AAR, to help Karen make an informed decision for her business. (But of course, we can’t share that). That particular CBA  is confidential to our client. We can however, show you what our analysis takes into account. Click here to see an example of LEAP’s CBA, a critical part of our construction analysis.

We will continue to support Karen in the next stage of growing her business. In the meantime, check out the offerings of Albany Art Room for yourself – where everyone is an artist!

[box type=”bio”] Contact LEAP if you are considering renovations to your commercial space. We help you plan and make critical decisions early on, that minimize risk and maximize returns. [/box]

Modern Addition – Dramatic Before and After Reveal

LEAP Architecture had the vision that transformed a little run-of-the-mill ranch house into a two-story, light and spacious modern-home. Form follows function in this Upstate NY modern addition, where every detail from bathroom tile glaze to the support structure for the great room was considered with the occupants, the environment and the budget in mind.

 

Architect’s Vision of a Modern Addition – Albany, NY

 

Vision of Air and Light

Where before rooms were dark and cramped, the new open floor plan – with floor to ceiling windows – fills the space with abundant natural light. It quite literally looks like a completely different house.

 

Dream Home, Sweet Home

LEAP succeeded in making the house feel vibrant and fresh, adding 520 sq. ft of new  living area and completely renovating an existing 680 sq. ft of interior space. In an effort maximize the occupant’s enjoyment of their backyard, a 20 sq. ft balcony and 200 sq. ft deck were seamlessly incorporated into the design. And the homeowners? They are over the moon about their updated living space.

“I measure the success of a project by the satisfaction of the homeowners”, says Eric Davenport, LEAP’s founder and chief architect, “and their satisfaction comes from LEAP’s innovative design process”.

 

Innovative Design

What does he mean exactly? Well, a LEAP architect considers a project from every possible angle – design, sustainability, cost, but mostly importantly the occupants.

How do the homeowners want to feel in this space? How will they move through it? How can their home best serve their dreams, desires and needs? Davenport is a master of envisioning this, and uses it to inform all other design considerations.

In this project, the owners wanted their home to feel expansive, luxurious, and joyful. They wanted to reconnect as a couple and delight in their living space. We were so honored to work with them and bring their dream-home to fruition.

 

Before and After Reveal

The before and after addition images are pretty staggering. Check out them out for yourself and leave us a comment. We’d love to hear what you think!

Still curious about our design process? Read more about LEAP’s process and see additional interior photos from this project here.

Have a dream project of your own? Contact LEAP to make it happen!

leap_architecture_residential_home_renovation-A

First floor view, showing expanded open floor plan – new kitchen area, dining room, and cozy nook with fireplace.

leap_architecture_residential_home_renovation_kitchen

Dramatic update of the kitchen area -clean, bright and functional.

leap_architecture_residential_home_renovation-B

Existing space was altered, with walls and ceiling removed to create an open floor plan.

2030 Challenge: Carbon-Neutral Buildings

Architecture 2030 issued The 2030 Challenge asking the global architecture and building community to implement carbon-neutral design by 2030. LEAP Architecture accepts this challenge!

All new buildings, developments, and major renovations shall be carbon-neutral by 2030

Buildings are the major source of global demand for energy and materials that produce by-product greenhouse gases (GHG). Carbon-neutral, also called carbon neutrality is a term used to describe the action of organizations, businesses and individuals taking action to remove as much carbon dioxide from the atmosphere as each put in to it. The overall goal of carbon neutrality is to achieve a zero carbon footprint.

Slowing the growth rate of GHG emissions and then reversing it is the key to addressing climate change and keeping global average temperature below 2°C above pre-industrial levels.

To accomplish this, Architecture 2030 issued The 2030 Challenge asking the global architecture and building community to adopt the following targets:

 

Graphic showing the move toward carbon-neutral by reducing greenhouse gas emissions over time

  • All new buildings, developments and major renovations shall be designed to meet a fossil fuel, GHG-emitting, energy consumption performance standard of 70% below the regional (or country) average/median for that building type.
  • At a minimum, an equal amount of existing building area shall be renovated annually to meet a fossil fuel, GHG-emitting, energy consumption performance standard of 70% of the regional (or country) average/median for that building type.
  • The fossil fuel reduction standard for all new buildings and major renovations shall be increased to:
    • 80% in 2020
    • 90% in 2025
    • Carbon-neutral in 2030 (using no fossil fuel GHG emitting energy to operate).

 

These targets may be accomplished by implementing innovative sustainable design strategies, generating on-site renewable power and/or purchasing (20% maximum) renewable energy.

Graphic showing design strategy + technologies + off-site renewable energy will lead to carbon-neutral building

The Impact of the 2030 Challenge

The 2030 Challenge has been adopted and is being implemented by 80% of the top 10 and 70% of the top 20 architecture/engineering/planning firms in the U.S. In addition, the AIA, ASHRAE, the U.S. Conference of Mayors, the federal government, and many other organizations and state and local governments and agencies have adopted the Challenge. In Canada, the Royal Architectural Institute of Canada, the Ontario Association of Architects and cities such as Vancouver have also adopted the Challenge targets.

Since 2006, the landscape for low-carbon building has been transformed, and building with sustainability and high performance in mind has become the standard approach. Zero Net Energy (ZNE) buildings have gone from being prototypes and experiments to being widely built and, in the case of California, being the standard that will be adopted for new residential buildings in 2020 and commercial buildings in 2030. Of course, this entire shift is not only due to the 2030 Challenge, but it has been key in helping focus the industry’s attention on the problem, and suggested a path to solving it.

 

For more information, visit: www.architecture2030.org